三肖料默认版块
2023-02-16 13:19:11 来源:
大模型训练热潮下,算力基础设施有望迎来产业机遇 ChatGPT发布之后,引发了全球范围的关注和讨论,国内各大厂商相继宣布GPT模型开发计划。我们认为,以GPT模型为代表的AI大模型训练,需要消耗大量算力资源,主要需求场景来自:预训练+日常运营+Finetune。以预训练为例,据我们测算,进行一次ChatGPT的模型预训练需要消耗约27.5PFlop/s-day算力。基于此,我们认为,随着国产大模型开发陆续进入预训练阶段,算力需求持续释放或将带动算力基础设施产业迎来增长新周期。产业链相关公司包括: ❶算力芯片厂商:景嘉微、寒武纪、海光信息、龙芯中科、中国长城等; ❷服务器厂商:浪潮信息、中科曙光等; ❸IDC服务商:宝信软件等。 ChatGPT:大模型训练带来高算力需求 训练ChatGPT需要使用大量算力资源。据微软官网,微软Azure为OpenAI开发的超级计算机是一个单一系统,具有超过28.5万个CPU核心、1万个GPU和400 GB/s的GPU服务器网络传输带宽。据英伟达,使用单个Tesla架构的V100 GPU对1746亿参数的GPT-3模型进行一次训练,需要用288年时间。此外,算力资源的大量消耗,必然伴随着算力成本的上升,据Lambda,使用训练一次1746亿参数的GPT-3模型所需花费的算力成本超过460万美元。我们认为,未来拥有更丰富算力资源的模型开发者,或将能够训练出更优秀的AI模型,算力霸权时代或将开启。 需求场景:预训练+日常运营+Finetune 具体来看,AI大模型对于算力资源的需求主要体现在以下三类场景:1)模型预训练:ChatGPT采用预训练语言模型,核心思想是在利用标注数据之前,先利用无标注的数据训练模型。据我们测算,训练一次ChatGPT模型(13亿参数)需要的算力约27.5PFlop/s-day;2)日常运营:用户交互带来的数据处理需求同样也是一笔不小的算力开支,我们测算得ChatGPT单月运营需要算力约4874.4PFlop/s-day,对应成本约616万美元;3)Finetune:ChatGPT模型需要不断进行Finetune模型调优,对模型进行大规模或小规模的迭代训练,预计每月模型调优带来的算力需求约82.5~137.5 PFlop/s-day。 算力芯片+服务器+数据中心,核心环节有望率先受益 我们认为,随着国内厂商相继布局ChatGPT类似模型,算力需求或将持续释放,供给端核心环节或将率先受益:1)算力芯片:GPU采用了数量众多的计算单元和超长的流水线,架构更适合进行大吞吐量的AI并行计算;2)服务器:ChatGPT模型训练涉及大量向量及张量运算,AI服务器具备运算效率优势,大模型训练有望带动AI服务器采购需求放量;3)数据中心:IDC算力服务是承接AI计算需求的直接形式,随着百度、京东等互联网厂商相继布局ChatGPT类似产品,核心城市IDC算力缺口或将加大。 关注AI景气周期下,算力基础设施产业机遇 我们认为,国产厂商未来或将训练出自己的GPT模型,带动算力设施产业迎来景气周期。相关公司包括: ❶算力芯片厂商:景嘉微、寒武纪、海光信息、龙芯中科、中国长城等; ❷服务器厂商:浪潮信息、中科曙光等; ❸IDC服务商:宝信软件等。 风险提示:宏观经济波动;下游需求不及预期。
=================
ChatGPT有望带动算力需求 需求端:大模型训练带来高算力需求 大算力消耗带来训练成本上升。训练ChatGPT需要使用大量算力资源。 据微软官网,微软Azure为OpenAI开发的超级计算机是一个单一系统,具有超过28.5万个CPU核心、1万个GPU和400 GB/s的GPU服务器网络传输带宽。据英伟达,使用单个Tesla架构的V100 GPU对1746亿参数的GPT-3模型进行一次训练,需要用288年时间。此外,算力资源的大量消耗,必然伴随着算力成本的上升,据Lambda,使用训练一次1746亿参数的GPT-3模型所需花费的算力成本超过460万美元。虽然GPT-3.5在模型参数量上有了明显下降,但考虑到GPT-3、GPT-3.5均为OpenAI独家拥有,其他厂商复刻难度较高,巨量参数或仍将是模型开发过程的必经之路,我们预计未来大模型开发的算力成本仍将较高。 模型算力需求增速超越芯片性能增速,算力霸权时代或将到来。 据OpenAI测算,自2012年以来,全球头部AI模型训练算力需求3-4个月翻一番,每年头部训练模型所需算力增长幅度高达10倍。而摩尔定律认为,芯片计算性能大约每18-24个月翻一番。因此,AI训练模型算力需求增长与芯片计算性能增长之间的不匹配,或将带来对算力基础设施供给需求的快速增长。我们认为,考虑到算力对于AI模型训练效果的关键性作用,拥有更丰富算力资源的模型开发者,或将能够训练出更优秀的AI模型,算力霸权时代或将开启。 具体来看,AI大模型对于算力资源的需求主要体现在以下三类场景: 1、模型预训练带来的算力需求 模型预训练过程是消耗算力的最主要场景。 ChatGPT采用预训练语言模型,核心思想是在利用标注数据之前,先利用无标注的数据,即纯文本数据训练模型,从而使模型能够学到一些潜在的跟标注无关的知识,最终在具体的任务上,预训练模型就可以利用大量的无标注数据知识。在Transformer的模型架构下,语言预训练过程可以根据上下文一次处理所有输入,实现大规模并行计算。通过堆叠多个解码模块,模型的层数规模也会随着提升,可承载的参数量同步增长。与之相对应的,模型训练所需要消耗的算力也就越大。 我们预计,训练一次ChatGPT模型需要的算力约27.5PFlop/s-day。 据OpenAI团队发表于2020年的论文《Language Models are Few-Shot Learners》,训练一次13亿参数的GPT-3 XL模型需要的全部算力约为27.5PFlop/s-day,训练一次1746亿参数的GPT-3模型需要的算力约为3640 PFlop/s-day。考虑到ChatGPT训练所用的模型是基于13亿参数的GPT-3.5模型微调而来,参数量与GPT-3 XL模型接近,因此我们预计训练所需算力约27.5PFlop/s-day,即以1万亿次每秒的速度进行计算,需要耗时27.5天。 此外,预训练过程还存在几个可能的算力需求点: 1)模型开发过程很难一次取得成功,整个开发阶段可能需要进行多次预训练过程; 2)随着国内外厂商相继入局研发类似模型,参与者数量增加同样带来训练算力需求; 3)从基础大模型向特定场景迁移的过程,如基于ChatGPT构建医疗AI大模型,需要使用特定领域数据进行模型二次训练。 2、日常运营带来的算力需求 ChatGPT单月运营需要算力约4874.4PFlop/s-day,对应成本约616万美元。 在完成模型预训练之后,ChatGPT对于底层算力的需求并未结束,日常运营过程中,用户交互带来的数据处理需求同样也是一笔不小的算力开支。据SimilarWeb数据,2023年1月ChatGPT官网总访问量为6.16亿次。据Fortune杂志,每次用户与ChatGPT互动,产生的算力云服务成本约0.01美元。基于此,我们测算得2023年1月OpenAI为ChatGPT支付的运营算力成本约616万美元。据上文,我们已知训练一次1746亿参数的GPT-3模型需要3640 PFlop/s-day的算力及460万美元的成本,假设单位算力成本固定,测算得ChatGPT单月运营所需算力约4874.4PFlop/s-day。 3、Finetune带来的算力需求 模型调优带来迭代算力需求。 从模型迭代的角度来看,ChatGPT模型并不是静态的,而是需要不断进行Finetune模型调优,以确保模型处于最佳应用状态。这一过程中,一方面是需要开发者对模型参数进行调整,确保输出内容不是有害和失真的;另一方面,需要基于用户反馈和PPO策略,对模型进行大规模或小规模的迭代训练。因此,模型调优同样会为OpenAI带来算力成本,具体算力需求和成本金额取决于模型的迭代速度。 供给端:核心环节有望率先受益 算力芯片:AI算力基石,需求有望大规模扩张 GPU架构更适合进行大规模AI并行计算,需求有望大规模扩张。 从ChatGPT模型计算方式来看,主要特征是采用了并行计算。对比上一代深度学习模型RNN来看,Transformer架构下,AI模型可以为输入序列中的任何字符提供上下文,因此可以一次处理所有输入,而不是一次只处理一个词,从而使得更大规模的参数计算成为可能。而从GPU的计算方式来看,由于GPU采用了数量众多的计算单元和超长的流水线,因此其架构设计较CPU而言,更适合进行大吞吐量的AI并行计算。基于此,我们认为,随着大模型训练需求逐步增长,下游厂商对于GPU先进算力及芯片数量的需求均有望提升。 单一英伟达V100芯片进行一次ChatGPT模型训练,大约需要220天。 我们以AI训练的常用的GPU产品—NVIDIA V100为例。V100在设计之初,就定位于服务数据中心超大规模服务器。据英伟达官网,V100 拥有 640 个 Tensor 内核,对比基于单路英特尔金牌6240的CPU服务器可以实现24倍的性能提升。考虑到不同版本的V100芯片在深度学习场景下计算性能存在差异,因此我们折中选择NVLink版本V100(深度学习算力125 TFlops)来计算大模型训练需求。据前文,我们已知训练一次ChatGPT模型(13亿参数)需要的算力约27.5PFlop/s-day,计算得若由单个V100 GPU进行计算,需220天;若将计算需求平均分摊至1万片GPU,一次训练所用时长则缩短至约32分钟。 全球/中国GPU市场规模有望保持快速增长。 据VMR数据,2021年全球GPU行业市场规模为334.7亿美元,预计2030年将达到4773.7亿美元,预计22-30年CAGR将达34.4%。2020年中国GPU市场规模47.39亿美元,预计2027年市场规模将达345.57亿美元,预计21-27年CAGR为32.8%。 服务器:AI服务器有望持续放量 ChatGPT主要进行矩阵向量计算,AI服务器处理效率更高。 从ChatGPT模型结构来看,基于Transformer架构,ChatGPT模型采用注意力机制进行文本单词权重赋值,并向前馈神经网络输出数值结果,这一过程需要进行大量向量及张量运算。而AI服务器中往往集成多个AI GPU,AI GPU通常支持多重矩阵运算,例如卷积、池化和激活函数,以加速深度学习算法的运算。因此在人工智能场景下,AI服务器往往较GPU服务器计算效率更高,具备一定应用优势。 单台服务器进行一次ChatGPT模型训练所需时间约为5.5天。 我们以浪潮信息目前算力最强的服务器产品之一—浪潮NF5688M6为例。NF5688M6是浪潮为超大规模数据中心研发的NVLink AI 服务器,支持2颗Intel最新的Ice Lake CPU和8颗NVIDIA最新的NVSwitch全互联A800GPU,单机可提供5PFlops的AI计算性能。据前文,我们已知训练一次ChatGPT模型(13亿参数)需要的算力约27.5PFlop/s-day,计算得若由单台NF5688M6服务器进行计算,需5.5天。 大模型训练需求有望带动AI服务器放量。 随着大数据及云计算的增长带来数据量的增加,对于AI智能服务器的需求明显提高。据IDC数据,2021年全球AI服务器市场规模为156亿美元,预计到2025年全球AI服务器市场将达到318亿美元,预计22-25年CAGR将达19.5%。2021年中国AI服务器行业市场规模为350.3亿元,同比增长68.6%,预计22-25年CAGR将达19.0%。我们认为,随着ChatGPT持续火热,国内厂商陆续布局ChatGPT类似产品,AI服务器采购需求有望持续增长,市场规模或将进一步扩张。 数据中心:核心城市集中算力缺口或将加剧 IDC算力服务是承接AI计算需求的直接形式。 ChatGPT的模型计算主要基于微软的Azure云服务进行,本质上是借助微软自有的IDC资源,在云端完成计算过程后,再将结果返回给OpenAI。可见,IDC是承接人工智能计算任务的重要算力基础设施之一,但并不是所有企业都需要自行搭建算力设施。从国内数据中心的业务形态来看,按照机房产权归属及建设方式的角度,可分为自建机房、租赁机房、承接大客户定制化需求以及轻资产衍生模式四种。 若使用某一IDC全部算力,可在11分钟完成一次ChatGPT模型训练。 我们以亚洲最大的人工智能计算中心之一—商汤智算中心为例。据商汤科技官网,商汤智算中心于2022年1月启动运营,峰值算力高达3740 Petaflops。据前文,我们已知训练一次ChatGPT模型(13亿参数)需要的算力约27.5PFlop/s-day,计算得若使用商汤智算中心全部算力进行计算,仅需11分钟即可完成。 AI训练需求有望带动IDC市场规模快速增长。 据中国信通院,2021年国内IDC市场规模1500.2亿元,同比增长28.5%。据信通院预计,随着我国各地区、各行业数字化转型深入推进、AI训练需求持续增长、智能终端实时计算需求增长,2022年国内市场规模将达1900.7亿元,同增26.7%。 互联网厂商布局ChatGPT类似产品,或将加大核心城市IDC算力供给缺口。 据艾瑞咨询,2021年国内IDC行业下游客户占比中,互联网厂商居首位,占比为60%;其次为金融业,占比为20%;政府机关占比10%,位列第三。而目前国内布局ChatGPT类似模型的企业同样以互联网厂商为主,如百度宣布旗下大模型产品“文心一言”将于2022年3月内测、京东于2023年2月10日宣布推出产业版ChatGPT:ChatJD。另一方面,国内互联网厂商大多聚集在北京、上海、深圳、杭州等国内核心城市,在可靠性、安全性及网络延迟等性能要求下,或将加大对本地IDC算力需求,国内核心城市IDC算力供给缺口或将加大。 产业链相关公司梳理 1)算力芯片厂商:景嘉微、寒武纪、海光信息、龙芯中科、中国长城; 2)服务器厂商:浪潮信息、中科曙光等; 3)IDC服务商:宝信软件等。 风险提示 宏观经济波动。 若宏观经济波动,产业变革及新技术的落地节奏或将受到影响,宏观经济波动还可能对IT投资产生负面影响,从而导致整体行业增长不及预期。 下游需求不及预期。 若下游数字化需求不及预期,相关的数字化投入增长或慢于预期,致使行业增长不及预期。
钞券雕刻师花瑞松讲述雕刻背后的故事
人物名片 花瑞松 上海印钞有限公司高级工艺美术师 钞券雕刻师第四套人民币一元券背面主景图案雕刻者第五套人民币壹佰元券背面主景图案雕刻
2019-07-11 10:03
新版人民币即将发行 怎样收藏最好呢
中国人民银行定于2019年8月30日起发行2019年版第五套人民币50元、20元、10元、1元纸币和1元、5角、1角硬币。 新版人民币发行的时期,往
2019-07-16 12:37
99版成龙头品种 第六套人民币将不再发行
前段时间,19版人民币的发行公告在市场中吵得沸沸扬扬!突如其来的人民币改版既在意料之中,又挺让人意外。意料之中的是纸币改版早有传言,
2019-07-16 12:39
关于新版人民币疑问解答在这里
前几天,新版人民币又双叒叕上微博热搜了!幸好,从8月30日起,万众期待的新版人民币就要来了!新版人民币包含50元、20元、10元、1元纸币
2019-07-18 13:19